博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HBase集群出现NotServingRegionException问题的排查及解决方法
阅读量:6852 次
发布时间:2019-06-26

本文共 2850 字,大约阅读时间需要 9 分钟。

  hot3.png

Posted by 原 攀峰 on 2012 年 11 月 25 日

HBase集群在读写过程中,可能由于Region Split或Region Blance等导致Region的短暂下线,此时客户端与HBase集群进行RPC操作时会抛出NotServingRegionException异 常,从而导致读写操作失败。这里根据实际项目经验,详细描述这一问题的发现及排查解决过程。

1. 发现问题

在对HBase集群进行压力测试过程中发现,当实际写入HBase和从HBase查询的量是平时的若干倍时(集群规模10~20台,每秒读写数据量在几十万条记录的量级),导致集群的读写出现一定程度的波动。具体如下:

1)写端抛出以下异常信息:

org.apache.hadoop.hbase.client.RetriesExhaustedWithDetailsException: Failed 150 actions: NotServingRegionException: 150 times, servers with issues: my161208.cm6:60020,at org.apache.hadoop.hbase.client.HConnectionManager$HConnectionImplementation.processBatchCallback(HConnectionManager.java:1600)at org.apache.hadoop.hbase.client.HConnectionManager$HConnectionImplementation.processBatch(HConnectionManager.java:1376)at org.apache.hadoop.hbase.client.HTable.flushCommits(HTable.java:916)

2)读端也抛出类似异常信息:

org.apache.hadoop.hbase.client.RetriesExhaustedException: Failed after attempts=10, exceptions:Mon Oct 29 14:03:09 CST 2012, org.apache.hadoop.hbase.client.ScannerCallable@3740fb20, org.apache.hadoop.hbase.NotServingRegionException: org.apache.hadoop.hbase.NotServingRegionException: xxxxxx,\x0FP\x8D\xC3\xDB1053223266:\x00\x00V6,1351490475989.bd68113129f07163dc25e78fba17ad6c. is closing

以上异常,在压测期间周期性地出现,HBase集群由此出现了短暂的不可服务期。

2. 排查问题

通 过查看HBase Master运行日志,结合客户端抛出异常的时刻,发现当时HBase集群内正在进行Region的Split和不同机器之间的Region Balance,那么,为什么会周期性频繁触发以上过程呢?而且是发生在压测期间(数据量与平时相比大几倍)。下面结合表的设计来分析一下:

1) 由于表中rowkey有时间字段,因此每天都需要新创建Region,同时由于写入数据量大,进一步触发了HBase的Region Split操作,这一过程一般耗时较长(测试时从线上日志来看,平均为10秒左右,Region大小为4GB),且Region Split操作触发较为频繁;

2)同时由于Region Split操作导致Region分布不均匀,进而触发HBase自动做Region Balance操作,Region迁移过程中也会导致Region下线,这一过程耗时较长(测试时从线上日志来看,平均为20秒左右)。

3. 解决问题

首先,从客户端考虑,其实就是要保证Region下线不可服务期间,读写请求能够在集群恢复后继续,具体可以采取如下措施:

1) 对于写端,可以将未写入成功的记录,添加到一个客户端缓存中,隔一段时间后交给一个后台线程统一重新提交一次;也可以通过 setAutoFlush(flase, false)保证提交失败的记录不被抛弃,留在客户端writeBuffer中等待下次writeBuffer满了后再次尝试提交,直到提交成功为止。

2)对于读端,捕获异常后,可以采取休眠一段时间后进行重试等方式。

3)当然,还可以根据实际情况合理调整hbase.client.retries.number和hbase.client.pause配置选项。

然后,从服务端考虑,需要分别针对Region Split和Region Balance进行解决:

1) 由于建表时,我们已经考虑到了数据在不同Region Server上的均匀分布,而且预先在不同Region Server上创建并分配了相同数目的Region,那么考虑到为了集群能够在实际线上环境下提供稳定的服务,可以选择关掉HBase的Region自动 Balance功能,当然关掉后可以选择在每天读写压力小的时候(如凌晨后)触发执行一次Balance操作即可。

2)接下来,Region总是被创建,不能被复用的问题该如何解决呢?根本原因是rowkey中包含了timestamp字段,而每时每刻 timestamp总是 向上增长的。但是,使用方确实需要能够根据timestamp字段进行顺序scan操作,因此,timestamp字段必须保留。据此,这里给出两种解决 思路:

  • 一种常用方法是将表按照时间分表,例如按天进行分表,这样可以通过预先建表创建好Region分区,避免实际读写过程中频 繁触发Region Split等过程,但是这一方法的缺点是每天需要预先建好表,而这一DDL过程可能出现问题进而导致读写出现问题,同时跨天时读写端也需要做出适应,调整 为读写新创建的表。
  • 其实,我们可以换一种思路,通过修改表的rowkey结构,将timestamp字段改成一个周期循环的 timestamp,如取timestamp % TS_MODE后的值,其中TS_MODE须大于等于表的TTL时间周期,这样才能保证数据不会被覆盖掉。经过这样改造后,即可实现Region的复用, 避免Region的无限上涨。对于读写端的变更也较小,读写端操作时只需将timestamp字段取模后作为rowkey进行读写,另外,读端需要考虑能 适应scan扫描时处理[startTsMode, endTsMode]和[endTsMode, startTsMode]两种情况。

转载于:https://my.oschina.net/vieky/blog/99918

你可能感兴趣的文章
python的变量与赋值
查看>>
计算机基础
查看>>
为什么要学习Node.js
查看>>
wampserver 安装后系统托盘图标呈橙色
查看>>
GDB调试之二栈溢出
查看>>
idea、jrebel激活
查看>>
spring中使用c3p0连接池的项目的写法
查看>>
NSNotification、delegate和KVO的区别
查看>>
我的友情链接
查看>>
AppWidgetProvider使用介绍
查看>>
Life is short,you need python!(1)
查看>>
交换机的工作原理
查看>>
maven pom进阶教程 - phase与goal
查看>>
电脑桌面监控软件都能监控到什么?聊天记录?能防止企业员工泄密吗?
查看>>
【Java基本功】一文了解Java中继承、封装、多态的细节
查看>>
Maven【私有仓库、上传jar包、引用私服jar包、上传本地项目到私服】
查看>>
你所不知道的Stoluck,STO区块链世界里低调的先行者
查看>>
处理nginx启动错误Failed to read PID from file /run/nginx.pid
查看>>
DNS域名系统
查看>>
CentOS安装和相关软件安装
查看>>